Molecular cloning, characterization and functional analysis of a 2C-methyl- D-erythritol 2, 4-cyclodiphosphate synthase gene from ginkgo biloba.
نویسندگان
چکیده
2C-methyl-D-erythritol 2, 4-cyclodiphosphate synthase (MECPS, EC: 4.6.1.12) is the fifth enzyme of the non-mevalonate terpenoid pathway for isopentenyl diphosphate biosynthesis and is involved in the methylerythritol phosphate (MEP) pathway for ginkgolide biosynthesis. The full-length mecps cDNA sequence (designated as Gbmecps) was cloned and characterized for the first time from gymnosperm plant species, Ginkgo biloba, using RACE (rapid amplification of cDNA ends) technique. The full-length cDNA of Gbmecps was 874 bp containing a 720 bp open reading frame (ORF) encoding a peptide of 239 amino acids with a calculated molecular mass of 26.03 kDa and an isoelectric point of 8.83. Comparative and bioinformatic analyses revealed that GbMECPS showed extensive homology with MECPSs from other species and contained conserved residues owned by the MECPS protein family. Phylogenetic analysis indicated that GbMECPS was more ancient than other plant MECPSs. Tissue expression pattern analysis indicated that GbMECPS expressed the highest in roots, followed by in leaves, and the lowest in seeds. The color complementation assay indicated that GbMECPS could accelerate the accumulation of beta-carotene. The cloning, characterization and functional analysis of GbMECPS will be helpful to understand more about the role of MECPS involved in the ginkgolides biosynthesis at the molecular level.
منابع مشابه
Molecular Cloning, Characterization, and Functional Analysis of Acetyl-CoA C-Acetyltransferase and Mevalonate Kinase Genes Involved in Terpene Trilactone Biosynthesis from Ginkgo biloba.
Ginkgolides and bilobalide, collectively termed terpene trilactones (TTLs), are terpenoids that form the main active substance of Ginkgo biloba. Terpenoids in the mevalonate (MVA) biosynthetic pathway include acetyl-CoA C-acetyltransferase (AACT) and mevalonate kinase (MVK) as core enzymes. In this study, two full-length (cDNAs) encoding AACT (GbAACT, GenBank Accession No. KX904942) and MVK (Gb...
متن کاملThe identification of isoprenoids that bind in the intersubunit cavity of Escherichia coli 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase by complementary biophysical methods.
The discovery of a distinct metabolic pathway, the non-mevalonate or 1-deoxy-D-xylulose-5-phosphate (DOXP) pathway for isoprenoid precursor biosynthesis, in eubacteria and apicomplexan parasites has revealed a new set of potential drug targets. The emphasis of research on this pathway has been on delineating the intermediates and the biochemical and structural characterization of component enzy...
متن کاملStudies on the nonmevalonate pathway to terpenes: the role of the GcpE (IspG) protein.
Recombinant Escherichia coli cells engineered for the expression of the xylB gene in conjunction with genes of the nonmevalonate pathway were supplied with (13)C-labeled 1-deoxy-D-xylulose. Cell extracts were analyzed directly by NMR spectroscopy. (13)C-labeled 2C-methyl-D-erythritol 2,4-cyclodiphosphate was detected at high levels in cells expressing xylB, ispC, ispD, ispE, and ispF. The addit...
متن کاملA Structure-Based Approach to Ligand Discovery for 2C-Methyl-d-erythritol-2,4-cyclodiphosphate Synthase: A Target for Antimicrobial Therapy†
The nonmevalonate route to isoprenoid biosynthesis is essential in Gram-negative bacteria and apicomplexan parasites. The enzymes of this pathway are absent from mammals, contributing to their appeal as chemotherapeutic targets. One enzyme, 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase (IspF), has been validated as a target by genetic approaches in bacteria. Virtual screening against Esc...
متن کاملCloning and characterization of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway genes of a natural-rubber producing plant, Hevea brasiliensis.
Natural rubber is synthesized as rubber particles in the latex, the fluid cytoplasm of laticifers, of Hevea brasiliensis. Although it has been found that natural rubber is biosynthesized through the mevalonate pathway, the involvement of an alternative 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway is uncertain. We obtained all series of the MEP pathway candidate genes by analyzing expressed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biochemistry and molecular biology
دوره 39 5 شماره
صفحات -
تاریخ انتشار 2006